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Abstract  

A general method of solving the equations of Sugawara's field theory of currents has been 
developed, and illustrated by applying it to the set of three currents. These are inserted 
into Einstein's field equations which have been solved together with the co-variant 'gauge' 
conditions for a gravitational field involving cylindrical symmetry. A further transform- 
ation exhibits the triad formed by the current vectors and exhibits clearly the deviations 
of the line-element from Schwarzschild's exterior solution, In a subsequent paper the case 
for eight vector currents corresponding to SU(3) will be treated in similar fashion. 

1, Introduction 

One of the outstanding problems in general relativity is to introduce the 
interaction of elementary particles with the gravitational field, and, in particu- 
lar, to obtain an equation of state resulting from that interaction. This would 
give us a better insight into processes which are responsible for the presence of 
gravitational fields, and which usually are described heuristically by a pressure 
and density as well as an equation of state connecting them (Wyman, 1949). 
On the other hand, if we do know the nature of the interaction, and, in par- 
ticular, the form of the energy momentum tensor a solution of the co- 
determined problem will give us the gravitational field as well. 

The abundance of different types of hadrons (Jackson, 1958) makes it 
unrealistic to consider all possible interactions in detail, and one must be satis- 
fied with a model which gives the main feature of the strong interaction. The 
many successful predictions of the so-called 'eight-fold way' (Gell-Mann & 
Ne'eman, 1964) and its underlying group structure is a good indication that a 
model based on it might, at least for the beginning, be sufficient to describe 
the desired interaction. A possible model is provided by Sugawara's field 
theory of currents (Sugawara, 1968) in which the field is represented by a 
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number of  currentsAui (i = 1 to 8) and the corresponding axial vectors Vu i. 
Neglecting the axial vector currents, it has been shownt that these satisfy the 
equations 

i i 1 • • Au,v  - Av,~ = --~ 8'm fmjk AtzlAv k (1.1) 

where we have limited us to a c-number theory'. The fiyg are the completely 
antisymmetricaI structure constants (Gell-Mann & Ne'eman, 1964, Table II) 
and K is the coupling constant. (The Kronecker deltas ~im have been intro- 
duced to preserve the explicit covariance of  the equations.) As usual, commas 
denote partial derivatives with respect to the co-ordinates x ~. (Since the 
equation is antisymmetric upon interchange of  p and v it is not necessary to 
replace partial derivatives by covariant ones.) 

In order to illustrate the method and to simplify matters we shall limit 
ourselves for the present to three c u r r e n t s  A~ i ( i  = l ,  2, 3). 

A~,~ i = K  (1.2) - Av,u 6 i m e m j k A j A v  k 

where e~]k are the components of  the Levi-Civita tensor. 
In addition to the field equations the vector currents also must satisfy the 

'gauge' condition, whose covariant form is given by 

D , A  "i = 0 (1.3) 

for any value of  i and where Du denotes covafiant differentiation 
Following Sugawara (1968) and limiting ourselves to a c-number theory for 

which one can assume commutability the energy momentum tensor has the 
simple form 

1 [AuiAv i _ ½gt~v(AaiAai)] (1.4) T . .  = - - £  

where summation over repeated indices is imptied.$ It is this energy momen- 
tum tensor which has to be introduced into Einstein's field equations 

Ruv - ½g.vR = - ~ r . v  (1.5) 

to provide us with a co-determined solution. 
If  we write (1.5) in its equivalent form 

Ruv = -•  (Tuv - ½g.vT) (1.6) 

it follows from (1.4) that the Einstein equations reduce to 

Ruv = - ~ A v i A v / 6  i] 

which is easier to handle mathematically. 

t The fact that we limit ourselves to a c-number theory makes it possible to omit terms 
of the form A u k A j .  

$ We adopt the usual summation convention both for the index tz = 1, 2, 3, 4 and 
vector currents i = 1, 2, 3. 
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The present problem, then, consists in finding solutions of the field 
equations (1.2) and satisfying the gravitational field equations (1.6) subject to 
the subsidiary conditions (1.3). In Section 2 we shall develop a method for the 
solution of the field equations and illustrate it by applying it to the simpler 
system (1,2). This will be followed in Section 3 by explicit solutions of the 
coupled system (I .2), (1.6) satisfying the subsidiary conditions (1.3) for a 
simple case involving cylindrical symmetry. 

The general case (1.1) will be treated in a subsequent paper in this series, 
where physically meaningful solutions of the field equations (1.1), (1.6) satis- 
fying the subsidiary conditions (1.3) are also exhibited. 

2. Field Equat ions  f o r  SU(2) 

The problem is to solve the equations (1.2) which can be written in full 
also as 

Ai~, v - Av,  = -~1 (Ais/AvX _ A v / A k  ) 

(i, 1, k = 1, 2, 3 in cyclic order) 

If we now set 

then, on account of 

and 

(2.1) 

co i = d , '  dx u (i = 1, 2, 3) (2.2) 

~ J A ~  k = (AuiA~, k - A v i A u k )  dxU A dx  v 

3 A v i dx~ A dx  ~' doo i = 3x---- 7- 

(2.1) becomes 

d w  i = 1__ coJAoo k (i, L k = 1,2, 3 in cyclic order) (2.3) 

where A denotes the outer product. The factor 1/K can be absorbed by setting 
cJ = Kw/, so that we have 

d w  i = wJ A w  k 

= ½e~.kwJw k (2.3') 

We now introduce the matrix 

~ =  llwo' 11 (2.4) 

o r  w i j  = e q k  w tc 

related to the vector w i through 

w i = ½ ei /kwjk 

13 



178 G E R A L D  E.  T A U B E R  

equation (2.3) can be written as (Flanders, 1963) 

d ~  = ~2  (2.5) 

A proof of this result, which will also be useful for our further work, is given in 
Appendix A. To find a (general) solution of (2.5) let 

~2= dRR -I  (2.6) 

where R = IlRq II is an arbitrary non-singular square matrix. Also, let 

0 = d g ~ -  ~ z  

From (2.6) we have 

dR = ~ R  

satisfying the ortho-normality relations 

l i. Rj : 8 ,  
In terms of these vectors (2.8) can then be written as 

Au x = K ek q 3R i K eki] ~__~_" Ri  
- i  Rj = -  2 (2.10) 

Hence 

d(dR) = d g ~ R  - g ~ d R  = ( 0  + ~ 2 ) R  - g ~ ( g a R )  = O R  : 0 

It follows, therefore, that O = 0 since R is arbitrary. However, this implies 
that (2.5) holds so that (2.6) is the required solution. In particular, it can be 
shown that R is orthogonal if ~ is skew-symmetric. 

Let us now return to (2.3). From (2.6) and the relation between the vectors 
w i and the matrix ~ = [I wq Ir it follows that 

w k = ½ ek'Twi] = ½ ~ e kil" dRmiRm/ 
m 

(2.7) 

= ½Eeki]-- ~Rrni R . ~XI~ ml dx ~ 
m 

Equating the two expressions (2.2) and (2.7) then yields 

S ~]£I] S ~ R m ,  ~X t" K .. • = _ ~ ek,, 0 ~ 1  Rmi (2.8) Au k 

m m 

for the vectors A~ i. Furthermore, since R is an orthogonal matrix, we can 
express it in terms of three unit vectors Ri 

R = (RIR2R3) where Ri = I R 2 i ~  (2.9) 
/ I \R3d 
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A particular representation of the vectors Ri is provided by the rotation 
group in terms of two angles a and/3 

Ra = sin a sin /3 ~ ,  R2 = [ cosasin/3 , R 3 =  s 

cos a / \ - s i n  a 

(The general case, of course, would be achieved by having recourse to the three 
Eulerian angles. However, we are interested in simple solutions for which two 
parameters will be sufficient.) Noting that 

aRa 
~x----- ~- = a~R2 + sin o~uR 3 

OR2 
3x u = - a u R  a + cos o ~ R 3  

3R3 
3x u - s in  a/3uR a - cos a/3uR 2 

it follows immediately from (2.10) that a particular solution of our original 
problem (t .2) is given by 

Au 1 = K cos a/3 u 

Au 2 = - K  sin o~ u (2.11) 

A g  3 = Ka~ 

These vectors still have to satisfy the gauge conditions (1.3), but since these 
will depend on the metric chosen, we shall discuss them together with the 
field equations (1.6) in the next section. 

3. The Codetermined Problem 

We now turn to the subsidiary conditions (1.3). Inserting the values found 
for the vectorsAu i (2.t 1) it is not difficult to see that we have to solve the 
system of equations 

~x u (avg~ZVX/(-g)) = ~x  ~ (flvgUVx/(-g)) = 0 au/3vg uv = 0 (3.1) 

Since these depend on the gravitational potentials it is important to use a 
proper line-element. Obviously, the simplest one would be the spherically 
symmetric line-element, but a simple consideration shows that at least two 
independent variables are necessary in order to avoid contradictions. However, 
if we use a line-element with cylindrical symmetry (Synge, 1960) 

ds 2 = _e2(V - r ) ( d p 2  + dz 2) _ p2 e -2 r  dq~2 + e2~ - d t  2 

v = v(p ,  z),  ~ = ~6o, z) (3.2) 

it turns out that the effect of the gravitational field cancels out in (3.1). 
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Assuming that a and 13 are only functions o fx  ~ = p and x 2 = z we find from 
(3.1) and (3.2) that 

O~ 1 
0~11 + {X2Z + ~ = 0 ,  1311 + 1322 +/31 = 0 (3.3) 

P P 

together with 

oq131 + a2132 = 0 (3.3') 

where as usual subscripts denote differentiation with respect to x 1 and x 2 
respectively. These are Laplace's equations in cylindrical coordinates (p, ¢, z) 
in ordinary Euclidean space for a function independent of ¢, for which a 
solution can be found easily. 

On the other hand, from (1.6) we obtain the system of equations 

= -K K 2 [(al 2 + a22) + (1312 +/322)] (3.4a) 

Rll-R22=2[r12-7-22-ff '¢]=-t~K2[(o'q2-o:22)+(1312-1322)] (3.4b) 

R12 = 2rlr2 v2 - KK2[c~a~ +t31/32] (3.4c) 

Raa = R 4 4  = 0 (3.4d) 

where we have defined 

,AT = 7"11 + 7-22 and Av = /)11 + P22 

As has been shown by Synge (I960) (3.4d) leads again to a Laplace equation 
for r of the form (3.3) 

a r  + 7-~ = 0 (3.5) 
P 

The two equations (3.4b) and (3.4c) can be solved for va and v 2 respectively. 
Inserting these values into (3.4a) and making use of (3.5) and (3.3) it can be 
shown that (3.4a) is identically satisfied, as well as the compatibility relation 

P21 = /)'12 

We therefore find an explicit solution to the codetermined problem provided 
we take any solutions of the Laplace equations (3.3) satisfying the orthogonality 
conditions (3.3') together with a solution of (3.5). 

At this point it is advantageous to introduce the coordinates 3,, p used by 
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Erez & Rosen (1959) to describe the gravitational field o f  a particle possessing 
a multipole moment. 

p = m @  2 --  1)I /2(1  -- ,t.t2) 1/2 

z = m X g  X > l  

- 1  < p <  1 (3 .6 )  

Here m denotes the mass of  the particle, but as far as we are concerned it is 
just an additional constant. In terms of these coordinates (3.3) becomes 

[(X 2 - 1)C~x],~, + [(1 - p 2 ) c % l , u  = 0 (3 .7 )  

with a similar equation for t3, where subscripts X and # denote derivatives with 
respect to these variables. Furthermore, the orthogonality condition (3.3') is 
n o w  

(X 2 - 1)e~x3~, + (1 - p2)ats3 u = 0 (3.7') 

A simple way of  satisfying this condition is to assume that 

a = ~(X) and /3 = fl@) (3.8) 

(We could, of  course, have made a similar assumption in the original coor- 
dinates but it is physically more satisfactory not to assume that 3(z) in order 
to avoid singularities along the z-axis.) 

Inserting (3.8) into (3.7) then gives 

A A X - 1  
°~K - ) t  2 1 or c~ = - -  In - -  

- 2 X - 1  

B 1 + # (3 .9 )  /3u - 1 _ p 2  3 = B l n  1 - p  

where A and B are two constants. 
In terms of  the new variables it is again possible to solve (3.4b) and (3.4c) 

for v x and v u with the restflt 

l - - p 2  2 
vx = 2(X2 _ p25 {[(X - 1)(2rx 2 + KK20~. 2) - (1 - U2)(27u  2 + tcK2/3#2)]~k 

(3.t0a) - 4p(X 2 - 1)rx%} 

~k 2 --  1 
P~t = 2 (~2  _ p 2 )  {[(~2 _ t)(2TK2 + K K 2 0 ~ h 2 )  _ (1 --  ~ 2 ) ( 2 7 #  2 + KK2/3#2]//  

+ 4X(1 - p2)rxru } (3.10b) 
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Just as before it can be shown that (3.4a) and the compatibility conditions 

are identically satisfied. 
Similarly, the equation for r (3.5) is given by 

[(X 2 -  1)rx],x + [(1 -/.t2)r/21,/2 = 0 (3.11) 

It has been shown by Erez & Rosen (1959) that a family of  solutions can be 
obtained by separation of variables. A general and well-behaved solution is 
given by 

7" = ~ alp l (I.t) al  (X) (3.12) 
1 

where Pl (/l) and Qt (X) are the Legendre polynomials of  the first and second 
kind respectively. Here I = 0, I, 2 . . . .  give the various contributions of  multi- 
poles of  order/. We limit ourselves for simplicity to the lowest order (i.e. 
setting the separation constant equal to zero). 

r = L in )tX_l- 1 (3.12') 

Finally, inserting the values found for ax,/3/2, and rx into (3.10), we obtain 

a X 2 - 1 b 1 - / . t  2 

v = -~ In X2 _/~2 + 4 in X2 _ ~2 (3.13) 

where a and b are constants related to our previous constants through 

a = 2L 2 + ¢K2A 2 

b = t~K2B 2 
(3.13') 

It is of  interest to carry out a further transformation involving both a con- 
formal mapping of  space and a coordinate transformation resulting in 

X = (r/m) - 1 and /.t = cos 0 (3.14) 

A more general solution of (3.11) but still of lowest order would be 

together with 

a ;k 2 - 1  b 1-/22 h - / 2  
v = ~ l n - - + 4 1 n - -  - c I n - -  

h 2  __ /22  h 2 - -  / 22  h - -  /2 

where now 

L = 2M 2 + K2B 2, c = LM 
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where r and 0 may be interpreted as the radius vector and azimuth angle of  a 
spherical polar system of  coordinates. In terms of  these coordinates we find 
from (3.9) 

a =  2 

B 1 + c o s 0  (3.15) 
/3 =-~- In 1 - c o s 0  

If  we also transform the vectors Av i according to (3.14) we obtain 

Ar I = 0 AO 1 = B  sin a/sin 0 

Ar 2 = 0 Ao 2 = B cos a/sin 0 

=-- -- Ao 3 = 0 (3.16) 
m 

which shows clearly the triad formed by these vectors. 
In these coordinates the line-element becomes t 

= __ L b(1 + r  2 dO2) ds= (1-2-~-) dt2 - (1- ~ )(a/2)-L (ms~ - - ~ 0 )  dr2 
2m 

- - L  / ( - r  e sin0 I - - -  dq~ (3.17) 

Apart from the multiplying factors (3.17) is of  the form of the Schwarzschild 
line element to which it actually reduces for L = 1, a = 2 and b = 0. (From the 
definition of  these values (4.13') it is seen that this corresponds to the free 
field core with A = B = 0.) 

4. Conclusion 
The above example illustrates the influence of  the vector currents on the 

gravitational field. Even for the simple solution chosen, there is a significant 
deviation from the Schwarzschild field. Clearly, if one takes the more general 
solution (3.12) the deviation would be more pronounced. Also, we limited 
ourselves to a representation depending only on two angles, a and/3, while in 

t For the solution given in the previous footnote (t 9. 182) the line element (3.17) 
acquires additional factors. In particular, L is to be replaced by 

L ~ ½c tanh -1 cos 0 
and the second term to be multiplied by 

(~ 2m . 20\c/2 

__ 2tacos 20 1 
r 2 /  



184 GERALD E. TAUBER 

general three angles could be introduced. This, in effect, would produce devi- 
ations depending not only on r and 0, but also ~b. Moreover, the particular 
form of the line-element used limited the effect, since the gauge conditions 
turned out to be independent of the gravitational field, which would not be 
true in general. For these reasons, it does not seem worthwhile to push the 
calculation further and try to derive some kind of effective equation of state, 
as was done, for example, in the case of a massive vector meson interaction 
with the gravitational field (Tauber, 1969). It can be seen from (1.4) and (3.16) 
that-at  least in the present case-there exist simple relations between the 
components of the energy momentum tensor of the form 

T1 I+7"2 2=0,  T3 3 = T  4 

which could be used to derive an effective equation of state. (Of course, it is no 
longer true that the distribution can be characterised by a simple pressure and 
density, as is the case for spherical symmetric distributions of matter.) 

The main purpose of the present calculation was to develop a method to 
solve the equations of Sugawara's field theory and to exhibit explicit solutions 
of the codetermined systems of equations satisfying the subsidiary conditions. 
The general case involving eight vectors will be treated in a subsequent paper in 
this series. 

Finally, it is a pleasure to acknowledge discussions with Prof. H. Flanders 
who has suggested the particular method employed here. 

Appendix-The Matrix Equation for SU(2) 

The equation to be solved is (2.3') 

dw i = ½ejkwiw k (i, ], k = 1, 2, 3) 

Introducing the matrix (2.4) through 

wq = eqk w k 

and since 

eJrnnekmn = 6k ], W i = ½eiJgw] k 

we obtain 

(A.1) 

(A.2) 

3 
7. wjkWkm = Ye~jke,,kmWiW n 

k=l k = l  

or, since wiw rn is antisymmetric upon interchange of i  and n 

3 
W/kWkm = ½ 2 (ei/kenkrn -- en/k) w i w n  

k = l  k=l  

Consider now the Pauli matrices o which satisfy the commutation relations 

[~], ak] = 2iejkmO m, a m = ~rnnexn (A.3) 
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and the Jacobi identity 

[[(li,oi],Om] - [[o], gm], oil + [[ore, oil, g]] = 0 

Inserting (A.3) into (A,4) twice in succession results in the identity 

3 
(eiikenk m -- en/keix m + enjmekin)  = 0 

k=l 

so that 

3 3 
WjkWkm = ½ ~ ekjmekinWiW n 

k=l k=l 

Furthermore, from (A.2) and (A. 1) it follows that 

dwjk  = enjk d w  n t _ k i n = ~ekj  m ffin W W 

which, combined with (A.6), results in 

3 

dwjk = ~ WjmWmk 
m=l 
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(A.4) 

(A.5) 

(A.6) 

(A.7) 

which is the desired result (2.5). 
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